Case Study: Results from the First U.S. Field Trial of Oxidation Technology for Coal Mine Ventilation Air Methane

Deborah A Kosmack – CONSOL Energy Inc. Richard A. Winschel – CONSOL Energy Inc. Kenneth P. Zak – MEGTEC Systems, Inc.

2008 U.S. Coal Mine Methane Conference October 28-30, 2008

CONSOL Energy Inc.

- Largest producer of high-Btu bituminous coal in the U.S.
 - 17 mining complexes in six states.
 - Proven and probable coal reserves of 4.5 billion tens
- Leads nation in production of coal from underground mines
- Produced 64.6 million tons of coal in 2007
- Majority shareholder in one of the largest U.S. producers of coal bed methane
 - CNX Gas Corporation
- Emitted 28.4 million cubic feet of coal mine methane in 2004
 - 88.7% ventilation air methane

MEGTEC Systems, Inc.

- \$260 million international company
- One business unit supplies air pollution control systems for destruction of volatile organic compounds
- One of the largest manufacturers of oxidation systems in world
- Evaluating and testing technologies for conversion of coal mine methane into energy for over 10 years

Methane Emissions from Coal Mines

- Methane is 2nd most important non-water greenhouse gas
- Coal mine methane (CMM) accounts for 10% of anthropogenic methane emissions in the U.S.
- Ventilation air methane (VAM) is single largest source of CMM
 - VAM was 76 billion cubic feet of the 142 billion cubic feet of CMM emitted in the U.S. in 2005
- Use of mine ventilation air is problematic due to low methane concentration, 0.3% to 1.5%

Coal Mine Ventilation Fan

Methane Conversion through Oxidation

- Oxidation process converts methane to CO₂ and water
 - Reduce greenhouse gas emissions
 - Reduces warming potential by 87%
- Potential to integrate a heat recovery system
 - Recover useful energy in the form of hot water, steam, or electricity
 - Avoids GHG emissions associated with the avoided fuel
- \triangleright Produces essentially no SO_x, NO_x, or CO

Application of Oxidizer Technology

- Oxidizer technology has widespread industrial use for destruction of volatile organic compounds
- Thermal flow reversal reactor (TFRR) system is self sustaining at low methane concentrations (0.2%-1.2%)
 - MEGTEC VOCSIDIZER
- Two slipstream tests conducted at coal mines in Great Britain and Australia
- Full-scale TFRR system producing electricity on an active Australian coal mine

First U.S. Field Trial

- Demonstrate MEGTEC's commercial size TFRR reactor on an inactive coal mine
 - Windsor Mine, West Liberty, WV
- Simulate mine ventilation air by blending methane emissions from a mine vent with air

Opportunities of Trial

- Test the equipment without impacting the operation of an active mine
- Gain hands-on experience with the technology
- Verify safety systems
- Collect operability and maintenance data on the equipment
- Allow observation by MSHA and other government agencies
- First step for future installation on a mine ventilation fan

Project Objectives

- Determine the long-term technical/economic feasibility of applying a full-scale thermal flow reversal reactor (TFRR) system to the safe and efficient operation of a large underground coal mine
 - Convert the low and variable concentration of methane in the simulated mine ventilation air to carbon dioxide effectively
 - Determine cost of applying technology
 - Determine the quantity of useful energy that can be economically produced

Windsor Mine Site

Field Trial Schematic Diagram

VOCSIDIZER Technology

- Single bed modular system to process 30,000 scfm of mine ventilation air
- Large bed of ceramic material in an airtight steel container
- Air plenum chambers above and below the bed
- Startup electrical heating element in the center of the bed
- Pneumatically actuated valves to control flow

VOCSIDIZER Cut-Away

VOCSIDIZER at Windsor Mine

Principle of Operation

- Electric heating element brings the temperature to 1000 °C (1832 °F) at startup
- Process fan forces the air into the plenum and through the bed
- Air is heated to temperature at which methane is completely oxidized
- Thermal energy released by oxidation is recovered by the bed medium
- Air flow is reversed, and the heat recovered in the first cycle heats the incoming ventilation air to oxidation temperature
- Process repeats

Air Flow in TFRR

Exhaust Air, CO₂, & H₂O

Principle of Operation

- Reaction zone stays in the center of bed where oxidization temperature is sustained
- Oxidation reaction takes place without auxiliary fuel and without a flame
- Methane conversion of 95%

Completed Installation

Operation

- Parametric testing
 - Determine effects of mine ventilation air flow rate and methane concentration on bed temperature and methane conversion
- Emission testing
 - Periodic stack testing to determine emissions
- Long-term testing
 - Evaluate operability over time
 - ♦ Phase I
 - ♦ Phase II

Parametric Tests

- Test five or six sets of operating conditions
- Three thirty-minute sample periods during steady-state operation
- Gas samples collected of VOCSIDIZER inlet and stack
- Analyze for methane concentration
- Calculate methane conversion
- Two separate test campaigns

Parametric Test Plan - Campaign 2

Test Run ID	Methane Concentration (%)	Process Air Flow Rate (scfm)
Test A	0.3	15,000
Test B	8.0	15,000
Test C	0.3	30,000
Test D	8.0	30,000
Test F	0.6	22,500

Bed Performance Results Campaign 2

	Test A	Test C	Test D
Target % CH ₄	0.3	0.3	8.0
Actual % CH ₄	0.29	0.30	0.79
Target flow, scfm	15,000	30,000	30,000
Actual flow, scfm	16,738	29,812	29,824
Temperature stack, °F	196	192	453
Delta T bed, °F	133	133	364
Maximum bed temp, °F	1897	1945	2095
% CH ₄ Conversion	97.9	98.8	97.8

Emission Tests

- Three test campaigns conducted
 - August 7-9, 2007
 - August 5-7, 2008
 - September 8-10, 2008
- Three one-hour tests per campaign
- Steady state conditions
 - 30,000 scfm process air
 - 0.6% methane concentration
- Measure SO_x, NO_x, CO, CO₂, O₂, VOCs, and particulate matter

Emission Test Results Campaign 2

	VOCSIDIZER inlet gas composition	stack gas composition	CH₄ conversion
CH ₄	0.47 %*	165 ppmv	96.6 %
C ₂ H ₆	< 0.01 %	< 0.01%	
CO ₂	0.11 %	0.65%	
O_2	20.6 %	19.7 %	
N_2	77.2 %	-	
СО		2.3 ppmv	
SO ₂		0.05 ppmv	
NO _x		0.20 ppmv	

[•]Inlet methane value by GC analysis; LEL monitor reads 0.6%.

^{**} PM emissions were 0.006 grains/DSCF or 2 lb/hr.

Bed Temperature Profile

→ TE101

----TE104

TE111A

<u></u>
→ TE111B

*TE111C

─TE111D

Emission Test Results Campaign 3

	VOCSIDIZER inlet gas composition	stack gas composition	CH₄ conversion
CH ₄	0.42 %*	154 ppmv	96.4 %
C ₂ H ₆	< 0.01 %	< 0.01%	
CO ₂	0.09 %	0.64%	
O_2	20.7 %	19.7 %	
N_2	77.6 %	-	
co		5.7 ppmv	
SO ₂		0.05 ppmv	
NO _x		0.22 ppmv	

[•]Inlet methane value by GC analysis; LEL monitor reads 0.6%.

Continuous Emission Monitoring Campaign 3 - Test 2

Long-Term Testing

- Objective to operate for 8 months continuously unmanned
- Operate at conditions typical of mine ventilation fan
 - -30,000 scfm process air
 - -0.6% methane concentration
- Collect operating and maintenance data

Operating Time-Phase I

- Simulated ventilation air methane introduced to VOCSIDIZER on February 11, 2007
- Total of 1300 unmanned operating hours from May 9, 2007 through November 30, 2007
 - ~27% availability
- More maintenance than expected
- Unreliable utility power responsible for some shutdowns

Operating Problems

- Methane detectors
 - Response time and accuracy did not meet requirements
- Air compressor system problems
 - Mechanical failure of components
 - Inability to maintain discharge pressure
- Temperature sensing problems
 - Failed thermocouples
- Bed media problems
 - Caused temperature control/profile problems
- Remote location
 - Caused longer than necessary times for restart

Operating Time - Phase II

- Re-commissioned the equipment in April 2008
- Maximum inlet methane concentration reduced to 0.8% from 1.2%
- Long-term tested resumed May 1, 2008
- Total of 2180 unmanned operating hours through September 30, 2008
 - ~59% availability
 - ~84% availability if excluding all "non-core" problems

Interim Operating Results

- Methane conversion meets spec (≥ 95%) at all conditions tested
- Pollutant emissions meet spec
- Self-sustained operation demonstrated at methane concentrations ranging from 0.3% at half flow to 1.0% at full flow
- Modified design limits methane concentration to ≤ 0.8%
- Equipment modifications greatly improved availability, but on-going long-term testing reveals some remaining maintenance concerns
- Some additional improvement modifications are expected

Plans and Schedule

- Continue long-term testing through October 2008
- Complete engineering/economic evaluation of a conceptual large commercial-size installation (180,000 cfm) with energy recovery system
- Final report to be submitted end of 2008
- Relocate equipment to mine ventilation fan on an active mine in 2009

Typical Ventilation Fan Site

Example Site Plan

Commercial VOCSIDIZER - Australia

Potential for Applications

- 180,000 cfm unit reduces methane emissions by 0.5 to 1.1 bcf/y
- Global warming potential reduced by 188,000 to 377,000 metric tonne per year CO₂e
- Thermal power of 18 36 MW
- Electricity generation of 5.4 10.8 MW possible
- Reduce demand on fossil fuel generating stations and resulting emissions of criteria pollutants and CO₂

Acknowledgements

- U.S. Department of Energy, National Energy Technology Laboratory
- U.S. Environmental Protection Agency, CMOP
- MEGTEC Systems, Inc.

